Turbulence Model Assessment for Flow across a Row of Confined Cylinders
نویسندگان
چکیده
The effectiveness of five different turbulence models is assessed for the flow across a row of confined cylinders at a pitch-to-diameter ratio of 1.7 and at Reynolds numbers ranging from 2621 to 55 920. Models examined include the one-equation Spalart-Almaras model; twoequation realizable k «, k v, and shear stress transport models; and a four-equation v2 f model. Quantities compared against published experimental data include minor loss coefficients, separation angles about cylinders, wake lengths behind cylinders, and streamwise velocity profiles at the periodic inlet/outlet boundaries. Results indicate that each of the models did a reasonable job in predicting the minor loss coefficient as a function of Reynolds number. With the exception of the k « model, each was also able to predict the experimentally observed trend of decreasing wake and separation lengths with increasing Reynolds number. In addition, all models also predicted a local minimum in the separation angle about the inner cylinder as a function of Reynolds number, which has also been observed experimentally. Our conclusion is that the v 2 f model performed slightly better at predicting the experimental data than any of the other models examined, although at the computational expense of solving two additional equations.
منابع مشابه
Effects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row
Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...
متن کاملNumerical Simulation of Separation Bubble on Elliptic Cylinders Using Three-equation k-? Turbulence Model
Occurrence of laminar separation bubbles on solid walls of an elliptic cylinder has been simulated using a recently developed transitional model for boundary layer flows. Computational method is based on the solution of the Reynolds averaged Navier-Stokes (RANS) equations and the eddy-viscosity concept. Transitional model tries to simulate streamwise fluctuations, induced by freestream turbulen...
متن کاملInternal combustion engines in cylinder flow simulation improvement using nonlinear k-ε turbulence models
The purpose of this paper is to studying nonlinear k-ε turbulence models and its advantages in internal combustion engines, since the standard k-ε model is incapable of representing the anisotropy of turbulence intensities and fails to express the Reynolds stresses adequately in rotating flows. Therefore, this model is not only incapable of expressing the anisotropy of turbulence in an engine c...
متن کاملIntake Manifold Flow Assessment on a 3-cylinder Natural Aspirated Downsized Engine Using CFD and GT-SUITE
In this paper the intake manifold as the most effective part on engine’s volumetrice efficiency is in vestigated in detail with emphesizing on flow behavior and characterestics. The eight different design have been prepared and imported to CFD software. Five objective functions for investigation of flow have been connsidered and applied in TOPSIS with different weights. Mass flow rate,massfl...
متن کاملA “v2-f Based” Macroscopic K-Ε Model for Turbulent Flow through Porous Media
In this paper a new macroscopic k-ε model is developed and validated for turbulent flow through porous media for a wide range of porosities. The morphology of porous media is simulated by a periodic array of square cylinders. In the first step, calculations based on microscopic v2 − f model are conducted using a Galerkin/Least-Squares finite element formulation, employing equalorder bilinear ve...
متن کامل